To store all request data from FastAPI
into Apache Spark, you can follow these steps:
1. Set Up Your Environment:
- Ensure you have
Python
,FastAPI
, and Apache Spark installed. You can usepip
to installFastAPI
andPySpark
:
pip install fastapi uvicorn pyspark
2. Create a FastAPI Application:
- Define your
FastAPI
application and create an endpoint to handle incomingrequests
. Here’s a simple example:
from fastapi import FastAPI, Request
from pyspark.sql import SparkSession
import json
app = FastAPI()
# Initialize Spark session
spark = SparkSession.builder \
.appName("FastAPI-Spark") \
.getOrCreate()
@app.post("/data")
async def receive_data(request: Request):
data = await request.json()
# Convert data to Spark DataFrame
df = spark.createDataFrame([data])
# Append data to a Spark table or save it to a file
df.write.mode("append").json("/path/to/save/data")
return {"status": "success", "data": data}
3. Run Your FastAPI Application:
- Use
Uvicorn
to run yourFastAPI
application:
uvicorn main:app --reload
4. Send Requests to Your API:
- You can use tools like
curl
or Postman to send POST requests to your FastAPI endpoint. Here’s an example usingcurl
:
curl -X POST "http://127.0.0.1:8000/data" -H "Content-Type: application/json" -d '{"key": "value"}'
This setup will allow you to receive JSON
data via FastAPI
, convert it into a Spark DataFrame
, and then store it in a specified location. You can customize the storage format and location based on your requirements.